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Kink Movements and Percolation in the 
Binary Additive Cellular Automaton 

Esa  N u m m e l i n  j 
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We show that under the Bernoulli initial condition two kinks in the cellular 
automaton (CA) 18/256 will annihilate each other with probability one. It turns 
out that there is an equivalent statement in terms of percolation in the simple 
binary additive CA. Namely, under the Bernoulli initial condition, l's do not 
percolate in the binary additive CA. 
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1. KINK M O V E M E N T S  IN THE CELLULAR A U T O M A T O N  
18/256 

In some cellular au toma ta  (CA) certain invariant  configurations or phases 
can be distinguished. Consider,  e.g., the elementary one-dimensional  CA 
no. 18/256, which evolves according to the rules 

001 ~ 1, 100~-* 1 

all the other triples ~ 0. Formally,  we have a discrete-time dynamical  system 
( t / , ; t = 0 ,  1,...) with state space {0, 1} • and transition rule t / , + l = T r / , ,  
where 

(Tr/)(i) = 1 if (tl(i-1),~t(i),~l(i+l))=(O,O, 1)or(1, O,O) 

(Tq)(i) = 0 otherwise 

(For  an account, of cellular au tomata  see, e.g., ref. 5.) 
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It is easy to see that the configurations with zeros in every second site 
are invariant. In fact if we cancel these extra zeros, then the remaining 
system behaves according to the binary additive rule 6/16, 

oq/w-*or (mod2) ,  ~ , / / ~ { 0 , 1 }  

The CA 6/16 has state space {0, I} •  {0, 1} • + ml. Its transition rule T 
is 

(Tq)(i)=q(i- �89189 (mod 2) 

By convention we assume that at time t = 0  the initial configuration 
{0, 1 } • Hence at even time epochs the configurations ~ {0, 1 } ~z, whereas 
at odd epochs they~ {0, 1 }• ~/_,j. 

Suppose now that in the above kind of initial configuration for the CA 
18/256, where we have zeros at every second site, we remove one of the 
zeros to get an initial configuration with two phases separated by a kink. 
A kink is by definition a block x of the form x = 102"1, where 2m ( = the 
number  of zeros between the ones at the ends) is even. We will call 2m the 
length of the kink and denote it by I•ol. If we look at the evolution of 
the CA 18 starting from an initial configuration r~ = r/o with one kink x = xo 
we can easily see that this situation prevails, i.e., at every time t = 0, 1, 2 .... 
there exists exactly one kink K, in the configuration r/,. We will call X,+l 
the successor of the kink x,, t = 0 ,  1 ..... Clearly, if I x , I - - 2 m > 0 ,  then 
Ix,+ t[ = 2 m - 2  and the midpoints of x, and x,+~ coincide. If I~:,1--0, i.e., 
x, is of the form 11, then the place and length of its successor x,+~ depend 
also on the exterior of re,. By the transformation rules of 18/256 the right 
(resp. left) endpoint of x,+~ is below the first block of the form 100 
(resp. 001) to the right (resp. left) of x,. We illustrate the movement  of the 
kink by the following picture (the movement  of the midpoint of the kinks 
is illustrated by the continuous line): 

~o 
ql 
qz 

q3 
q4 

- - �9 0 1 0 1 0 0 0 1 0  ! [ 0 0 1 0 1 0 0 0 1 0 1  . . - 
. . . .  0 0 0 1 0 1 0 1  0 1 0 0 0 1 0 1  O 0  . . . .  
. . . . .  0 1  0 0 0 0 0  1 0 1 0 1  0 0 0  1 . . . . .  
. . . . . .  0 1 0 0 0 1 0 0  ] 0 0 1 0 1 0 0  . . . . . .  
. . . . . . .  0 1 0 1 0 1 0 0 0 0 1 0 0  . . . . . . .  

In ref. 1 it was proved that under the Bernoulli initial condition a 
single kink performs a random walk (with independent delay times). The 
Bernoulli initial condition (with one kink) means that in the initial con- 
figuration there exist two phases separated by one kink xo- At the free sites 
(i.e., at the sites where also l 's are allowed) outside Ko the O's and l 's are 
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distributed according to the Bernoulli (1/2, 1/2) distribution. This result 
confirmed the earlier simulation results obtained by Grassberger.  t21 

Suppose now that  we have exactly two kinks X~o I~ and ~c~o 2~ in the initial 
configuration r/o. It follows from the local character  of the transition rules 
that  as long as Xto l~ and xto -'~ remain separate they move like single kinks, 
i.e., have their successor kinks xl '~ and ~r t =  1, 2 ..... as described before. 
But now, if at some moment ,  say r, both of them are of the form 
x~ l~ =Gt21-- 11 and if between them the configuration is comprised of an 
alternating sequence of O's and l's, i.e., r/~ is, e.g., of the form 

G = . . - 1  0 0 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0  0 1 . . .  (1.1) 

then at time r + 1 the kinks annihilate each other and so there are no kinks 
left in G+~.  For  example,  if r/~ is as in (1.1), then 

r/~+l . . . .  1 0 1 015 1 0 0 0 1 . - .  

Simulation results t2~ show that  under the Bernoulli initial condition 
two kinks evolve like two independent RW's,  implying in part icular  that  
annihilation ought to occur almost  surely. 

This, indeed, is the case: 

T h e o r e m  1. Under  a Bernoulli initial condition the annihilation of 
two kinks occurs a lmost  surely. 

As in ref. 1, the proof  is based on an isomorphism between the CA 
18/256 and the binary additive CA 6/16 (see Theorem 2). In ref. 3 a related 
"linearization" of the CA 18/256 is constructed. The key lemma in the 
proof  is a percolation result concerning the binary additive CA which may  
be of independent  interest and is therefore stated as a separate theorem 
(Theorem 3). 

2. K I N K  M O V E M E N T S  IN T H E  B I N A R Y  A D D I T I V E  C A  

As noted in Section 1, the CA 18/256 having only one phase (i.e., no 
kinks) evolves on its free sites like the CA 6/16. (We call the sites where l 's  
are allowed free.) 

Suppose now that  an initial configuration r/o for CA 18/256 has two 
phases separated by one kink 

Xo = 102"1, m ~ 0 

Let us map  qo to an initial configuration qo for the CA 6/16 as follows: 
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Outside rc o we remove the nonfree sites (all of which are occupied by 
O's). F rom Xo we remove m zeros and equip the midpoint  with a bar to get 
a block go of the form 

g0 = 10k00kl, if m = 2k + 1 is odd 

/~o = 10k- 0kl ,  if m = 2k is even 

So the underscore indicating the midpoint is under the midzero if m is odd 
and between the two midzeros if m is even. We will call go still a kink. 

Now we let the CA 6/16 evolve from #o according to its additive rule. 
Let us equip the midpoint of  the unique block under go which is of the 
form 10"1 again with an underscore and call it the successor kink ~1 of ~o- 
Similarly, ffl will have its successor kink x2, and so on. Thus, formally we 
have instead of the ordinary CA 6/16 a marked CA 6/16. It is evident that 
the (ordinary) CA 18/256 with one kink is isomorphic as a dynamical 
system to the marked CA 6/16 with one kink. 

Now this isomorphism carries over to the case of an arbitrary number  
of kinks if we postulate that two kinks (i.e., blocks of type 10ml equipped 
with the underscores) annihilate each other (i.e., the underscore is 
removed) at the epoch of coalescence. In the case of coalescence of several 
kinks annihilation occurs if the number  of the coalescing kinks is even, 
whereas one kink survives if the number  is odd. We illustrate this by the 
following example of evolution of the marked CA 6/16 having initially two 
kinks: 

�9 . . 0 0  0 0 1_1 1 0 0  1 0_0 1 1 1 0 1 0 . - .  
�9 . . 0 0  0 1 0_0 1 0 1 1 0 1 0 0  1 1 1 - . .  

- - - 0  0 1 1 0 1 1 1 0 1_1 1 0 1 0 0 - - .  
- - -0  1 0 1 1 0 0 1 1 0_0  1 ! 1 0 - . .  

- (2.1) 
�9 . . l  1 1 0 1 0 1 0 1 Q  1 0 0 1 . . .  

�9 . .0  0 1 1 1 1 1 1 1 1 1 0 1 . . .  
�9 . . 0  1 0 O 0  0 0 0 0 0 1 1 - . -  

�9 . .1  1 0 0 O 0  0 O 0  1 0 . - .  

We see from the picture that the two kinks get annihilated at t = 7. 
Note  that if in the picture, e.g., the 101 block to the right from the 

10_01 kink were designated as a kink 1_01, then its successor would still be 
alive at t = 7. If the 1001 block in between the two kinks 1_1 and 10_01 were 
a kink 10_01, then it would coalesce at t = 7 with the two other kinks with 
the result that one kink would survive from this coalesence of an odd 
number  of  kinks. 

To illustrate the isomorphism, we picture the isomorphic image of the 
example (2.1). The image follows the rules of the CA 18/256. We indicate 
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the evolution of the midpoints of the two links again by lines. Note that 
contrary to the case of the marked CA 6/16, the lines do not belong to the 
model as necessary marks, but serve only for illustrational purposes: 

- . .  050  0 0 0  1 ~ 0  1 0 
0 4 0 0 0 1 0 4 0 0 1  
0 3 0 0 1 0 1 4 0 1 0  
0 2 0 1  0 0 0 q l  0 0  
0 1 0 l 0 1 4 0  1 0 

�9 .. 0 0  0 0 0 l l l  0 1 
. . .  0 0 0 1 0 0 0 0  

- . .  0 1 0 1 0 0 0  

0 0 0  0 1 0 0 1 0 0  1 0 1 0 1 0 0 0 1 0 0 0  - . .  
0 0 0  1 0 1 010 1 0 0 0 0  0 1 0 1 0 1 0 .. 
I 0 1 0 0 0 1 ~ 0  1 0 0 0  1 0 0 0 0  0 . . .  
0 0 0 1 0 1 0 4 0 0 1 0 1 0 1 0 0 0 . . .  
O 0 1 0 0 0 1 ~ 0 1 0 0 0  O0  I 0 .-- 
0 1 0 1 0 1 0 1 1 1 0 1 0  O 0 1 0  . . .  
0 0 0 O0 0 O0 0 O 0 1 0 1 0  .- .  
0 0 0 0 0 0 0 0 0 0 1 0 0 0  -.-  

If the 10Sl block between the two kinks were instead a 
the isomorphic image of  a kink I0_01 ), then instead of  the 
would have a 10141 kink at time t = 7 [cf. the discussion 
(2.1)]. 

1041 kink (i.e., 
lO~51block we 
after example 

As a consequence of  the above discussion, we see that we can as well 
study the annihilation problem within the framework of the simpler CA 
6/16. So Theorem 1 is equivalent to the following result: 

Theorem 2. Let us distribute the initial configuration for the CA 
6/16 according to the Bernoulli (1/2, 1/2) distribution and let us designate 
any two 100 . . .01  blocks as kinks. Then these two kinks will annihilate 
each other almost surely. 

Let us record also the corollaries for the multikink case: 

C o r o l l a r y  1. Consider the CA 6/16 with Bernoulli initial condition 
and n kinks. Then eventually there are n (mod 2) kinks left (a.s.). 

Corollary 2. Consider the CA 6/16 with Bernoulli initial condition 
and infinitely many kinks. Then eventually any of  the kinks will be 
annihilated by some of the other kinks (a.s.). 

Corollary 3. Consider the CA 18/256. Consider an initial condition 
obtained as follows. Let there be one phase, i.e., l 's are allowed only on 
every second site. Let O's and l 's be distributed on these free sites with 
Bernoulli (1/2, 1/2) distribution. Now create an arbitrary number  2 ~< n ~< 
of kinks by removing zeros from those 100...01 blocks which are wanted to 
become kinks. If n is finite, then there are eventually n (mod 2) kinks left 
(a.s.). If n is infinite, then eventually any of the kinks will be annihilated by 
some of the other kinks (a.s.). 
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3. P E R C O L A T I O N  IN T H E  B I N A R Y  A D D I T I V E  CA 

The proof  of Theorem 2 will be based on the observation that 
annihilation of the two kinks is equivalent to nonpercolation of l's. More  
precisely, let NI= {0, 1,...}, 77= { .... - -1 ,0 ,  1, 2,...}, co= (co(i); i~77), be an 
initial configuration for the CA 6/16. Let co, = (co,(/)) be the configuration 
at time t >/0. 

A sequence t r=  (tro ..... tr,) of sites is called a l-path (from (i, 0) to 
(j, t)) if: 

(i) ao=i, a ,=j .  
(ii) cos(as)= 1 for all s = 0 ,  1 ..... t. 

(iii) las-as_~l = 1/2 for all s =  1 ..... t. 

t is called the length of a. 
Note  that, if for any t and j, co , ( j )=  1, then there is a 1-path from 

some (i, 0) to (j, t). This follows from the fact the dynamics of 6/16 
produces a 1 only from the two blocks 01 and 10 (both containing a 1). 

Let a, (resp. b,) denote the right (resp. left) end site of the left kink 
(resp. right kink) at time t. Clearly any 1-path a starting in between ao and 
bo stays between the two kinks (until possible annihilation), that is, if 
ao ~ ao ~< bo, then a, ~< a, ~< b, for all t <~ t, where 

t + 1 - the epoch of annihilation 

Also, since co~+ t ( i )=  0 for a ~ -  1/2 ~< i~< b~ + 1/2, it follows that any 1-path 
starting between the kinks has length ~<t. On the other hand, since, e.g., 
co,(a~)= 1, and as remarked before there always exist unending 1-paths 
backwards, there always exist 1-paths starting from some (i, 0) between the 
kinks and having length t. 

Thus we obtain the following characterization for t =" the annihilation 
epoch - 1: 

t = sup{ t >~ 0: there is a 1-path of length t from some (i, 0) 

with ao ~< i ~< bo } 

Hence, in order to prove that annihilation occurs (with probabili ty 1) we 
have to prove that (with probability one) there do not exist 1-paths of 
infinite length starting from any (i, 0) between the kinks. 

So we have still one equivalent formulation for Theorems 1 and 2: 

T h e o r e m  3. Let us distribute the initial configuration for the CA 
6/16 according to the Bernoulli (1/2, 1/2) distribution. Then with proba- 
bility one there are no infinite 1-paths. 
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Proof of Theorem 3. There is no loss of generality to consider paths 
starting from (0, 0). For  any initial configuration co= (co(i); i c E )  let 

50(co) :=  U {(J, t): a ,  = j f o r  an infinite l -path  a 

starting from (0, 0) } 

Let A = {co: 5a(co)4: ~ } .  Let P denote the Bernoulli (1/2, 1/2) distribution 
of the initial configuration co. First we claim that  A is symmetr ic  in the 
following sense: 

P { ( j - � 8 9  s+ 1) ~ 5el A; O'o ..... a , ;  a.~ = j }  
(3.~) 

= P { ( j +  �89 s +  I ) E S a I A ;  ao ..... as; as=j}  

for all j and s, all paths {(ao, 0), (a~, 1) ..... (as, s)} = 5 e. 
In order  to prove this, let, for a fixed co �9 A, ~ denote the right-hand 

edge of the cone generated by the initial segment (a o ..... a.,.) of an infinite 
1-path a = (ao, al  .... ) starting from (0, 0). Suppose as = j .  That  means 

~ = ( a o  ..... ~.,-)-- coo J +  ,col 

Similarly, let fl denote the left-hand edge 

and y the upper  edge 

The configurations to the right and 

respectively. 

..... o . , )  

left from y are denoted by 

) 

In what  follows we take s and the 1-path a o ..... as to be fixed. Hence 
so are the blocks ~, fl, and y. Let r= be the map  {0, 1 } ~ - - *  {0, 1} xN 
which maps  the sequence co+ to the sequence ( cos ( j+ l ) , cos ( j+2) , . . . ) ,  
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where (j,s)=(1/2,7), c~=00111101, f l = l l l 0 1 0 1 1 ,  c o + = 0 1 0 0 . . . ,  and 
v~(co+)=0110-  --): 

c o  _ ~ c o  + 

1 0 0 1 0 1  0 0 0 1 0 0  - . 
/ 

- .  1 0 1 1 1 1 0 0 1 1 0  
/ 

1 1 0 0 0 1  0 1 0 1  
\ 

0 1 0 0 1 1 1 1 1  
\ 

1 1 0 1 0 0 0 0 .  
\ 

0 1 1 1 0 0 0 . .  
/ 
1 0 0 1 0 0 .  
\ 

- .  1 0 1 1 0 - . .  

(3.2) 

Clearly r ,  is invertible and preserves the Bernoulli (1/2, 1/2) product  
measure. 

Similarly, let zp be the map  which maps  the sequence co_ to the 
sequence (co,(j-1), co~(j-2), . . . ) ,  rt~ is invertible and measure-preserving, 
too. 

Let the overbar  denote the operat ion which turns any sequence 
co= (og(n)) to the sequence 03= (03(n)), with 0 3 ( - n ) = c o ( n ) .  Let B denote 
the event B - { c o :  ( - 1 / 2 ,  1)e  5a(co)}. Note  that  

( j _  1 5, s +  1) e 5e(co) (3.3) 

if and only if 

t0(co_ ) lr,(co + ) ~ B (3.4) 

Clearly, (1 /2 ,  1 ) ~ 5e(co) if and only if 03 ~ B. Hence 

( j+l  ~, s + 1) ~ 5a(co) (3.5) 

if and only if 

T~(CO +) l~/j(co_) ~ B (3.6) 
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Let ~o be the map  

69 ~ ~o(69) = 69' 

mapping  a configuration 69=o3 ),69+ (with a fixed ~,) to a configuration 
co' = c0'_~,co'+ (of the same type), where 

rt369'_ = % 6 9 + ,  i.e., 69'_ =r~-1%69+ (3.7) 
t z~69+ =rt369_, i.e., co'+ =r~zl~69_ (3.8) 

Since r ,  and ra are invertible measure-preserving maps,  it follows that  so 
is q~. By (3.3)-(3.8) 

{ ( j - - '  ~_, S +  1 ) ~ 5 : }  = q ~ - ' { ( j +  ' _~,S+ 1)E~e} 

from which the assertion (3.1) follows. 
Next  we define a RW on A as follows: 
Let 69 ~ A be fixed. First note that, since the Bernoulli product  measure 

is a Lebesgue-type measure,  there is a sequence ~"1, n = 0, 1 ..... of partit ions 
of A, ~1,,I = {A~ 'a, A~ "1_ ..... A ~"1~2" J, such that 

P(A I"~) = 2 " and ,.zi-l~"+l~ uA2i~,,+l~ =A i~,o 

for all i and n. We define inductively a sequence ao, a~ .... of Z v0 (77 + 1/2)- 
valued r .v . ' sas  follows: 

Let ao(69)=0,  and inductively, assuming that ao(CO),.., as- l (69)  and 
as(co) = j  are given, we define: 

{a) I f ( j + � 8 9  s + l ) r  then let a.~+l(69)=j-1/2. 
(b) I f ( j -  1/2, s +  I ) r  then let a . , .+ l (69)= j+  I/2. 

(c) If both ( j+l /2 ,  s + l )  and ( j -1 /2 ,  s+l)s6:(69), then let 
a s + l ( 6 9 ) = j +  1/2 according as 69eAl  '~ for an even or odd i. 

By (3.1) and by the construction,  

P{a, .+ ,  = j +  �89 ao ..... a :_ , ; c r . , .= j}  = �89 

P{a.,+,=j-�89 ..... a.,_,;a.,=j}=�89 

In other words, "(a,.; s = 0, 1,...) is a symmetric  RW on A. Let Q be the 
probabil i ty measure P condit ioned with respect to A: Q( . )  = P("1A). It will 
turn out that  Q is in fact singular with regard to P, implying P(A)= 0, as 
asserted by our  theorem. The p roof  of  this is based on the following 
picture: 
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Start a symmetric  RW from the origin. Let us label its path  by l's. On 
the other hand, we think that  these l 's are generated by the CA 6/16 with 
initial distribution Q. Let us follow the RW up to site (j, s): 

0 0 1 0 1 0 
/ 

1 0 1 1 1 1 
/ 

1 1 0 0 0 1 
\ 

0 1 0 0 1 
\ 

1 1 0 1 
\ 

0 1 1 
/ 

1 0 
\ 

1 

0 

0 

(3.9) 

Here (j, s) = (1/2, 7). 
This path determines uniquely a block y = (o9(j-s/2) ..... og( j+  s/2)) of 

the initial configuration o9. Let n - j + s / 2  [in (3.9), n = 4 ] .  Let us again 
denote by ~ the right edge of the cone generated by the RW (or o ..... ~r.,.) [in 
(3.9), ~ = 00111101]. Now,  it follows from the transit ion rules of 6/16 that 
the symbol  w,,+~=ogj+./z+ ~ is determined by the pari ty of the occurrence 
of the next move to the right after s by the RW. More  precisely, let 

D 1 v - m i n { n ~ > O :  a,+,,+t-os+,, + ~} 

Now all the events {v = 0 }, { v = 2 }, { v = 4 } ..... will produce the same sym- 
bol ~o,,+, =f,,(og,,, % _ ,  .... ), whereas the events {v = 1 }, {v = 3} ..... produce 
co.+ t = 1 - f . (~n , , ,  o9,,_ t .... ). Here f .  is a function of o9., co,,+ 1 ..... depending 
only on finitely many  of the variables o9., o9.-1 ..... [ In  (3.9), 
f,,(og,,,og,,+l,...)=f4(0, 0, 1, 0, 1, 0, 0, 1 ) = 0 ,  since a 0 at (5 ,0)  is com- 
patible with having v even.] But this implies 

Q{o9,,+, =f.(o9,, ,  o9._, .... )] co,,, co,,_, .... } = P{v is even} = -~ 

Q{o9,,+, = 1 - f , , ( c o . ,  o9._, .... )log,,, o9 . - ,  .... } = P { v i s  odd} =�89 

rendering Q singular with respect to the symmetric  Bernoulli product  
measure P. 
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Concluding R e m a r k s .  The above  p roof  proves only the a.s. 
annihi la t ion  of two kinks. If we would like to know, e.g., the exact dis tr ibu-  
t ion of the annih i la t ion  epoch,  then by the percola t ion  equivalence we 
ought  to calculate the dis t r ibut ion of the max imum length of the l -pa ths  
s tar t ing between the two kinks. (An al ternat ive way to calculate this dis- 
t r ibut ion  and to prove the a.s. annihi la t ion might  be to consider  the two 
random walks as some kind of M a r k o v i a n  s ta t ionary  RWs.)  

More  generally, as noted by G r a s s b e r g e r ]  2~ the case where there is an 
infinite number  of  kinks becomes still more  compl ica ted  and interesting. 
There one can ask what  is the decay rate of the density of the kinks. 
S imula t ion  results .2~ show that  the rate is t-~/2, which is the rate in the case 
of o rd inary  i.i.d. RWs. 
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